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The covering-domain method is adopted to calculate "rst the interior sound "eld of
a complex-shaped cavity sti!ened with stringers, then the in#uence of an appended mass on
the complex cavity wall is further analyzed based on the covering-domain method. Besides,
the method is applied to analyze acoustic shape sensitivity of complex-shaped cavity.
Combining a speci"c cavity, we calculate the corresponding acoustic shape sensitivity when
every dimension of the cavity varies respectively. This will provide theoretical instruction for
dynamic structural modi"cation of the complex-shaped cavity.

� 2002 Elsevier Science Ltd.
1. INTRODUCTION

The interior sound "eld distribution of a cavity could be optimized or altered by dynamic
structural modi"cation in general. There are many optimizing measures in common use,
such as appending sti!ened stringer or a piece of mass, recomposing structural restrictions
and altering wall-thickness or shape of the cavity. It is of important practical signi"cance to
analyze structure-modi"ed in#uence on the interior sound "eld quantitatively.
For a complex-shaped closed shell, the substructure method [1] can be used to analyze

the in#uence of sti!ened stringer. But the method needs to obtain the mass, rigidity and
damping matrixes of every subsystem, and to calculate eigenvalue of large matrix, which is
time-consuming despite some mature arithmetic, such as sub-space method and Lanczaos
method.
According to the principle of the covering-domain method [2, 3], it can be applied not

only to calculate the interior sound "eld of complex-shaped cavity, but also to deal with the
complex cavity with uneven wall-thickness. Therefore, in this paper, the covering-domain
method is used to analyze the in#uence of a sti!ened stringer on the internal sound "eld of
the complex cavity, and further to study the in#uence of an appended mass.
In addition, acoustic shape sensitivity analysis is studied by adopting the

covering-domain method in this paper.
Early in 1988, Aria et al. [4] analyzed acoustic shape sensitivity without considering

vibroacoustic coupling. In 1991, Kane et al. [5] presented a shape design sensitivity analysis
formulation by using the implicit di!erentiation of the discretized Helmholtz integral
equation. In 1992, Smith and Bernhard [6] computed the sensitivity by di!erentiating the
�Present address: Institute of Acoustics, Nanjing University, Jiangsu Province, Nanjing 210093, People's
Republic of China.
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discretized boundary integral equation. The derivative of the system matrix was
approximated by adopting the "nite di!erence concept. Although the "nite di!erence
method is straightforward and easily available for utilization, the method is not suitable for
non-linear systems and has high computational cost owing to the reconstruction of the
system matrix in order to adapt it for the perturbed shape.
In order to reduce the singularity of the sensitivity equation, the uniform potential "eld is

brought into the solution process [7]. Because this potential-combined weakly singular
sensitivity equation can increase the computational cost and requires singular integration
to obtain an accurate solution, the sensitivity equation is further regularized and only the
acoustic equation is used. The singularities of the integrands in the integral representation
can be removed by adopting an integral identity utilizing the one-dimensional propagating
wave component.
Therefore, we adopt the covering-domain method to analyze the acoustic shape

sensitivity of the complex-shaped cavity, which has direct signi"cance of optimizing its
inside sound "eld by altering the structural shape.

2. THEORY OF THE COVERING-DOMAIN METHOD

Assume that the elastic objects A and B are, respectively, "xed in two separate
co-ordinate systems. When the two co-ordinate systems are overlapped, it is concluded that
B covers A if point M3A, then M3B.
In the general case, the boundary curved surface C of an arbitrary-shaped closed shell

A can always be "tted by n pieces of spherical surfaces C
�
, C

�
,2, C

�
. To calculate the

interior sound "eld of the closed shell A, a series of close spherical shells A
�
(k"1, 2,2, n)

can be used to coverA. The spherical shellA
�
has only a piece of its boundary¸

�
to coincide

withC
�
and has the same thickness as the original spherical surfaceC

�
. It is obvious that the

common domain of all of A
�
is the domain occupied by the closed shell.

Although it is di$cult to calculate the interior sound "eld of a closed shell with
complicated shape directly, it is easy to calculate the interior sound "eld of these spherical
shells. So we can make use of the concept of covering-domain to change the problem of the
interior sound "eld of a complicated shell into a simple problem of a series of closed
spherical shells. Then the interior scattered sound "eld of the arbitrary-shaped closed shell
can be expressed as follows:

P
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��
(r) is the scattering sound "eld of the kth covering spherical shell at a point r inside

the arbitrary-shaped closed shell.
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a point r
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where k"�/c is the wave number, in which c is the sound velocity, h���
�
( ) ) is the "rst kind of

the spherical Hankel function, j
�
( ) ) is the spherical Bessel function, and P�

�
( ) ) is the "rst

kind of the associated Legendre function, h is the thickness of the spherical shell, R is the
nominal radius of the closed spherical shell, E is the Young's modulus, � is the Poisson ratio
of the shell material, and k

�
is an averaging coe$cient of the shear, i"�!1, � is the

circular frequency, and � is the media density.
Since expression (2) is deduced by a vibration equation satis"ed by the closed thin

spherical shell and the boundary conditions, the scattering from the shell to the outer
in"nite space is considered in calculating the interior scattering sound pressure by
expression (2).
According to the acoustic reciprocity theory, to calculate the radiation sound pressure of

an elastic object at a special point r
�
due to the action of an external force, it is supposed

that there is a point sound source q with unit strength at r
�
. If the scattered sound "eld

P
�
(r, r

�
) by the elastic object at a point r due to the action of the q is known, the radiation

sound pressure of the elastic object at the point r
�
excited by the external force can be

calculated by the following equation:
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where f (r) is the distributive external force acting on the elastic object at r, S is the elastic
surface, n is the normal of the elastic surface which directs toward outside, P (r

�
) is the

radiation sound pressure at r
�
, and P

�
(r, r

�
) is the scattered sound "eld by the elastic surface.

For a complex-shaped cavity, the interior scattering sound "elds P
�
(r) can be obtained by

equations (1) and (2), then the interior radiated sound "eld from the cavity excited by an
external force can be obtained by equation (3).
Furthermore, in reference [2] the derivation of formula (2) makes it a condition that the

spherical shell is thin-walled, i.e., h�
, where 
 is the wavelength of sound wave propagated
in the shell material. Therefore, the valid frequency range in the covering-domain method is
limited in f�c

�
/h, where c

�
is the sound velocity in the shell material.

3. STRUCTURE-MODIFIED INFLUENCE ON THE INTERIOR SOUND FIELD
OF A COMPLEX-SHAPED CAVITY

3.1. INFLUENCE OF STIFFENED STRINGER ON THE INTERIOR SOUND FIELD OF A CAVITY

We have indicated that the covering-domain method can deal with the complex-shaped
cavity that has equal or unequal wall-thickness in reference [2]. For uneven wall-thickness
of the cavity, it can be "tted by the corresponding covering spherical shells with
di!erent thicknesses. Thus, when an arbitrary-shaped cavity wall is sti!ened with
stringers on the surface, we can consider the sti!ened stringers as part of the
thickness-increased wall.
In order to test the validity of the covering-domain method applied to the acoustic

problem of a cavity sti!ened with stringers, we fasten sti!ened stringers on the surface of
a rectangular chest. The chest is 1)2 m in length and 0)5 m in breadth and 0)8 m in height
and all walls consist of steel plates of 2 mm in thickness. As shown in Figure 1, the
orthogonal co-ordinates system is established and the positions of sti!ened stringers are
shown with grid in places 1 and 2 of the upper surface. In the "rst experiment, we fasten
a piece of rectangular stringer on place 1, and in the second experiment, another piece of
rectangular stringer is fastened on place 2. These rectangular stringers are all 0)5 m in length
and 0)05 m in breadth and 0)007 m in height.
Figure 1. Sketch of rectangular cavity sti!ened with stringers.
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For such sti!ened cavity, we measured the interior radiated sound "eld due to the action
of single-point harmonic force. The experimental apparatus is the same as in reference [3].
In the two experiments, the excitation positions are located in the point (0)5, 0)33, 0)8), and
the amplitudes of the driving forces are all regulated to 3 N.
When the covering-domain method is applied to do theoretical calculations for a

rectangular chest, theoretically the more big the radii of the covering spherical shells are, the
more "t to the walls of the chest is. But there exists a problem of numerical calculation here.
Suppose the radius of the covering spherical shell is taken as r

�
and the wave number is k

�
,

when k
�
r
�
is very big, the series in expression (2) has low convergence and we have to

calculate more terms of the series to obtain the accurate result. Because the factorial
calculation with the higher order term is limited by computer capacity, the radius of the
covering spherical shell cannot be taken in"nite. In order to compare the e!ect of
the di!erent radius of the covering spherical shell to "t the wall of a rectangular chest, we
have calculated the interior radiation sound pressures of the chest with the di!erent radius
of the covering spherical shell in reference [8] as shown in Figure 2. It can be seen from
Figure 2 that when the radius of the covering spherical shell reaches 20 m, the results for 70
and 120 Hz are all steady and the radius of the covering spherical shell can take smaller
value in the higher frequency. Therefore, for the rectangular chest sti!ened with stringers,
since every wall and the stringers are all #at, we select the radii of the covering spherical
shells to be 20 m.
The comparisons between measured results and computed results of radiated sound

pressure amplitudes at di!erent interior points are listed in Tables 1}4.
From the above comparisons, we can "nd that the computed results are higher than the

measured results. This may be due to two reasons. On the one hand, we have to use
cohesion to adhere to the sti!ened stringers on the chest surface in these experiments, which
inevitably forms medium layer between them. Since the medium layer increases structural
damping, which is not considered in the theoretical calculation, this will lead to the result
that computed values are higher than the measured values. On the other hand, the wall
opening in the experimental chest let out the internal sound pressure, which also is not
considered in the theoretical calculations.
Figure 2. The e!ect of the di!erent radius of the covering spherical shell to "t the wall of the rectangular chest.



TABLE 1

Comparisons for a stringer sti+ened at 75Hz driving frequency

Co-ordinate positions
Measured Calculated Di!erence

Order x y z pressure (dB) Pressure (dB) (dB)

1 0)9 0)25 0)5 81)9 85)1 !3.2
2 0)9 0)25 0)3 82)5 85)5 !3)0
3 0)8 0)25 0)5 83)3 85)6 !2)3
4 0)8 0)25 0)3 84)3 86)3 !2)0
5 0)7 0)25 0)5 83)5 86)4 !2)9
6 0)7 0)25 0)3 82)6 83)3 !3)2
7 0)6 0)25 0)5 83)1 84)7 !1)6
8 0)6 0)25 0)3 84)7 83)3 1)4

TABLE 2

Comparisons for a sti+ened stringer at 120Hz driving frequency

Co-ordinate positions
Measured Calculated Di!erence

Order x y z pressure (dB) Pressure (dB) (dB)

1 0)9 0)25 0)5 84)7 87)7 !3.0
2 0)9 0)25 0)3 87)4 90)1 !2)7
3 0)8 0)25 0)5 84)5 87)5 !3)0
4 0)8 0)25 0)3 86)7 90)3 !3)6
5 0)7 0)25 0)5 85)9 88)6 !2)7
6 0)7 0)25 0)3 87)2 90)4 !3)2
7 0)6 0)25 0)5 85)1 88)6 !3)5
8 0)6 0)25 0)3 88)2 90)5 !2)3

TABLE 3

Comparisons for two sti+ened stringers at 75Hz driving frequency

Co-ordinate positions
Measured Calculated Di!erence

Order x y z pressure (dB) Pressure (dB) (dB)

1 0)9 0)25 0)5 77)5 81)3 !3.8
2 0)9 0)25 0)3 75)3 78)0 !2)7
3 0)8 0)25 0)5 79)5 81)8 !2)3
4 0)8 0)25 0)3 76)8 78)9 !2)1
5 0)7 0)25 0)5 82)7 84)9 !2)2
6 0)7 0)25 0)3 77)2 80)0 !2)8
7 0)6 0)25 0)5 84)3 85)6 !1)3
8 0)6 0)25 0)3 77)7 80)6 !2)9
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Although there is a little discrepancy between the measured results and the computed
results including random error in experiment, there is a good agreement between them. It is
veri"ed to be feasible that the covering-domain method can be adopted to deal with the
acoustic problem of a sti!ened complex cavity with stringers.



TABLE 4

Comparisons for two sti+ened stringers at 120Hz driving frequency

Co-ordinate positions
Measured Calculated Di!erence

Order x y z pressure (dB) Pressure (dB) (dB)

1 0)9 0)25 0)5 74)7 78)3 !3.5
2 0)9 0)25 0)3 81)0 84)7 !3)7
3 0)8 0)25 0)5 76)3 78)5 !2)2
4 0)8 0)25 0)3 81)6 83)7 !2)1
5 0)7 0)25 0)5 79)5 80)2 !0)7
6 0)7 0)25 0)3 79)9 78)9 #1)0
7 0)6 0)25 0)5 81)4 81)3 #0)1
8 0)6 0)25 0)3 77)2 79)0 !1)8
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3.2. INFLUENCE OF AN APPENDED MASS ON THE INTERIOR SOUND FIELD OF CAVITY

Theoretically, the covering-domain method can also be adopted to deal with the acoustic
problem that there is an appended mass on the surface of complex-shaped cavity. Whereas
the interface of the appendedmass is small, it is inconvenient to apply the method directly to
deal with this acoustic problem. Here we present another method to solve this acoustic
problem with an appended mass.
Considering a complex-shaped elastic closed cavity as shown in Figure 3, when a

substance whose mass is m is appended on the cavity surface S
�
, we need to study the

in#uence of the appended mass m on the interior sound "eld of the closed cavity.
Without the appended mass, the interior scattered sound "eld P

��
(r, r

�
) of the

complex-shaped cavity can be calculated by the covering-domain method. When the
complex-shaped closed cavity is appended with mass we will "rst calculate its interior
scattered sound "eld P

��
(r, r

�
).

Because the appended mass m is small, here we suppose that the appended mass does not
bring deformation of the cavity surface S

�
. And then the following equivalence theory comes

into existence.
Supposing there is a point sound source q with unit strength at r

�
(r
�
, �

�
, �

�
) inside the

cavity, due to the action of the sound source q, the appended mass m vibrates harmonically,
which can be considered equally as a harmonic force F(r

�
) is acting on the cavity surface S

�
.

Therefore,

P
��
(r, r

�
)"P

��
(r, r

�
)#�!

1

4�i��� ��S
�

	P
��
(r
�
, r)
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)F (r�

) dS, (4)

where

F (r
�
)"!mxK �S

�

"

m

� )
	P

��
(r
�
, r)

	n �S
�

, (5)

where xK denotes vibration acceleration at S
�
of the cavity surface S

�
, n is the outward

normal vector of S
�
.

Substituting equation (5) into equation (4), the result is

P
��
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�
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��
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�
)!

m
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�
�
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��
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�
, r)
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dS. (6)



Figure 3. Appended mass on the surface of complex-shaped cavity.
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Equation (6) belongs to the following non-linear Fredholm-type second integral
equation:

� (x)"f (x)#
 �
	




F (x, y, �(y)) dy. (7)

It can be proved [9], when the absolute value of parameter 
 is properly small, the solution
�(x) of Fredholm integral equation (7) exists, which can be constructed by using the
following gradual approach method:

�
�
(x)"f (x), �

�
(x)"f (x)#
 �

	




F (x, y, �
���
(y)) dy (n*1). (8a, 8b)

When nPR, then �
�
(x) tends towards the exact solution � (x).

When the mass m is small, the solution of integral equation (6) can be constructed by
using the above gradual approach method. Considering the absolute value of m/(4�i���) is
quite small, we can take "rst order approximate value as the solution of integral equation
(6). Thus,

P
��
(r, r

�
)+P

��
(r, r

�
)#

m

4�i��� ��S
�
�
	P

��
(r
�
, r)

	n �
�
dS. (9)

The interior scattered sound "eld of the complex cavity with appended mass can be
calculated by equation (9), so the internal radiated sound "eld of the closed cavity with the
appended mass can be calculated by applying the reciprocity theory. Then the in#uence of
the appended mass on the interior sound "eld of the complex-shaped closed cavity can be
considered quantitatively.
According to the above equivalence theory, the in#uence of the appended mass on the

interior sound "eld of the complex-shaped cavity corresponds to that of the external force
driving on the cavity surface. In order to indicate the in#uence of the layout position of
appended mass on the interior sound "eld of the cavity, we calculate theoretically the
interior radiated sound "eld of the rectangular chest as shown in Figure 1 when the
excitation position varies along the length direction of the chest. The calculated results
are shown in Figure 4, and here the amplitude of the harmonic external force is 1 N, the
calculated point in Figure 4(a) is located in (0)3, 0)12, 0)4) (the unit is meter), the calculated
point in Figure 4(b) is located in (0)5, 0)32, 0)6). And the excitation position varies along the
length direction of the chest, but y-co-ordinate and z-co-ordinate of the excitation position
hold the line, they are 0)25 and 0)8 m respectively. In Figure 4, real line, dashed line, real line



Figure 4. The interior sound pressure with di!erent excitation frequency: (a) calculated point (0)3, 0)12, 0)4);
(b) calculated point (0)5, 0)32, 0)6).
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with star and dashed line with star denote the di!erent calculated results when the driving
frequencies are 31)5, 70, 120 and 170 Hz respectively.
From Figure 4 it can be found that the interior sound "eld is sensitive to the excitation

position, especially in low-frequency band. For di!erent response points, the driving
frequency and frequency band to which the sound pressure is sensitive are di!erent. This
result is coincident to the practical testing from AUDI Corporation [10].

4. ACOUSTIC SHAPE SENSITIVITY ANALYSIS

Because the covering-domain method is based on the reciprocity theory, and the
expression of the scattered sound "eld of the covering spherical shell is exact, the solution of
the covering-domain method is theoretically analytical. In this section, we adopt the
method to analyze the acoustic shape sensitivity of the interior sound "eld of
complex-shaped cavity.

4.1. MATHEMATICAL DEFINITION OF SENSITIVITY

Sensitivity is a very broad concept, which has di!erent speci"c meanings in di!erent
domains. But it can all be de"ned in mathematics as follows:
Supposing function f (x) is di!erentiable, its one order sensitivity is de"ned as

s ( f (x))"
	f (x)
	x

(10)

or

s( f (x))"
�f (x)
�x

. (11)

Equation (10) is the "rst order di!erential sensitivity, and equation (11) is the "rst order
di!erence sensitivity. The following relative sensitivity is also in common use:

s ( f (x))" lim
�xP0

�f / f

�x/x
"

x

f

	 f (x)
	x

fO0. (12)
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Besides, there still are corresponding higher order sensitivities. The above sensitivities all
re#ect the in#uence degree of function f (x) on the variation of parameter x.

4.2. THE RELATIVE SENSITIVITY OF INTERIOR SCATTERED SOUND FIELD OF SPHERICAL

SHELL TO ITS PARAMETERS

When there is a point sound source with unit strength at a point r
�
inside the spherical

shell of wall-thickness h and radius R, we can apply equation (2) to further calculate the
relative sensitivity of the scattered sound pressure at an internal point r of the spherical shell
to its wall-thickness and radius.
The sensitivity of interior scattered sound "eld P

�
of spherical shell to its radius R can be

calculated by

	P
�
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The sensitivity of interior scattered sound "eld P
�
of spherical shell to its thickness h can

be calculated by
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b
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��
are also the same as equation (2).

The relative sensitivities of the scattered sound pressure at an internal point r of spherical
shell to its wall-thickness and radius under di!erent frequencies are shown in Figures 5
and 6 respectively. The basic parameters in the two "gures are: the elastic modulus of the
shell material E"2)1�10��N/m�, the Poisson ratio �"0)3, air media density
�
�
"1)29 kg/m
, sound velocity c"340 m/s, and the point sound source is located at

r
�
"(0)08, �/3, �/6), the calculated point is located at r"(0)12, 3�/4, 2�/3). In Figure 5 the

spherical shell radius R"0)18 m, and in Figure 6 the spherical shell wall-thickness
h"0)002 m.
In Figure 5, when the frequency is 70, 170 and 320 Hz in turn, the relative sensitivity of

the internal scattered sound "eld of the spherical shell to its wall-thickness almost coincides,
which indicates that the relative sensitivity is very insensitive to the frequency. When the
spherical shell wall-thickness ranges between 0)0002 and 0)021 m, the relative sensitivity of
the scattered sound "eld inside the spherical shell to its wall-thickness tends to show an
exponential downtrend and it is very small, which shows that the interior scattered sound
"eld is insensitive to variance in the wall-thickness.



Figure 5. Relative sensitivity of interior scattered sound "eld of spherical shell to its wall-thickness.

Figure 6. Relative sensitivity of interior scattered sound "eld of spherical shell to its radius.
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From Figure 6 we can conclude that (1) the relative sensitivity of the scattered sound "eld
inside the spherical shell to its radius is di!erent with di!erent frequency, (2) for di!erent
frequency, the radius corresponding to the extremum of the relative sensitivity is di!erent,
and (3) with increased frequency, the peak value of the relative sensitivity drifts towards
smaller radius. This enables us to design speci"c structural shape with corresponding
frequency.
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4.3. THE ACOUSTIC SHAPE SENSITIVITY OF A RECTANGULAR CHEST

There is a rectangular chest with length x"1)2 m and breadth y"1)0 m and height
z"0)8 m and wall-thickness h"0)002 m.When a harmonic force with amplitudeA acts on
the upper surface to the rectangular chest at a point r

�
, the sensitivity of the radiated sound

pressure at an internal point r to the chest length x, breadth y and height zwith two di!erent
frequencies 70 and 120 Hz are shown in Figures 7, 8 and 9 respectively. (a) and (b) in these
"gures show the internal sound pressure amplitude of the chest at di!erent excitation
positions respectively. Here the elastic modulus of the chest material is
E"2)1�10��N/m�, the Poisson ratio �"0)3, air media density �

�
"1)29 kg/m
, sound

velocity c
�
"340 m/s, A"3 N and the calculated point is located at (0)55, 0)65, 0)67) in the

three "gures.
It can be found from these "gures that when the calculated point position is "xed, the

sensitivity of the sound pressure at the response point to the shape parameters of the chest is
di!erent with di!erent driving frequency. In the same way, the sensitivity is also di!erent
with di!erent excitation position. But at certain point inside the chest the sound pressure is
Figure 8. Sensitivity of interior sound pressure of rectangular chest to its breadth with di!erent excitation
frequency and driving position: (a) (0)4, 0)33, 0); (b) (0)65, 0)53, 0).

Figure 7. Sensitivity of interior sound pressure of rectangular chest to its length with di!erent excitation
frequency and driving position: (a) (0)4, 0)33, 0); (b) (0)65, 0)53, 0).



Figure 9. Sensitivity of interior sound pressure of rectangular chest to its height with di!erent excitation
frequency and driving position: (a) (0)4, 0)33, 0); (b) (0)65, 0)53, 0).
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most sensitive to a certain direction. Therefore, even though for the same interesting
response point, the acoustic shape sensitivity is di!erent with di!erent driving frequency
and di!erent excitation position. In order to optimize the internal sound "eld of a speci"c
structure at certain optimizing position, the structural shape should be designed by the
corresponding external excitation position and exciting frequency.

5. CONCLUSIONS

In this paper the covering-domain method is adopted to analyze "rst the in#uence of
sti!ened stringers on the internal sound "eld of a complex-shaped cavity, then the in#uence
of an appended mass is further studied based on the covering-domain method. Besides, the
method is applied to analyze acoustic shape sensitivity. Combining a speci"c cavity,
we calculate the acoustic sensitivity due to shape variety of the cavity. This will provide
a theoretical base for dynamic characteristic modi"cation of the complex-shaped cavity.
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